V = 1293.53 (12) Å³

 $0.54 \times 0.13 \times 0.08 \text{ mm}$

Diffraction, 2007)

Cu $K\alpha$ radiation

 $\mu = 2.57 \text{ mm}^{-1}$

T = 110 K

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A monoclinic polymorph of 1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one

Jerry P. Jasinski,^a* Ray J. Butcher,^b B. Narayana,^c S. Samshuddin^c and H. S. Yathirajan^d

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cDepartment of Studies in Chemistry, Mangalore University, Manalaganotri 574 199, India, and ^dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: jjasinski@keene.edu

Received 5 December 2009; accepted 21 December 2009

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.096; data-to-parameter ratio = 14.7.

The crystal structure of the title compound, $C_{16}H_{13}ClO_2$ (II), (space group $P2_1/c$,) is a polymorph of the structure, (I), reported by Harrison, Yathirajan, Sarojini, Narayana & Indira [Acta Cryst. (2006), E62, o1647-o1649] in the orthorhombic space group $Pna2_1$. The dihedral angle between the mean planes of the 4-chloro- and 4-methoxy-substituted benzene rings is 52.9 (1) $^{\circ}$ in (II) compared to 21.82 (6) $^{\circ}$ for polymorph (I). The dihedral angles between the mean planes of the prop-2-en-1-one group and those of the 4-chlorophenyl and 4methoxyphenyl rings are 23.3 (3) and 33.7 $(1)^{\circ}$, respectively. in (II). The corresponding values are 17.7(1) and $6.0(3)^{\circ}$, respectively, in polymorph (I). In the crystal, weak $C-H\cdots\pi$ interactions are observed.

Related literature

For the orthorhomic polymorph, see: Harrison et al. (2006). For the biological activity of chalcones and flavonoids, see: Dimmock et al. (1999); Opletalova & Sedivy (1999); Lin et al. (2002); Nowakowska (2007). For the synthesis and biological activity of some fluorinated chalcone derivatives, see: Nakamura et al. (2002). For non-linear optical studies of chalcones and their derivatives, see: Sarojini et al. (2006); Poornesh et al. (2009); Shettigar et al. (2006, 2008). For our studies of chalcones, see: Jasinski et al. (2009).

Experimental

Crystal data

C16H13ClO2 $M_r = 272.71$ Monoclinic, $P2_1/c$ a = 15.6695 (7) Å b = 14.1235 (8) Å c = 5.8455 (3) Å $\beta = 90.771 \ (5)^{\circ}$

Data collection

Oxford Diffraction Xcalibur	Diffraction, 2007)
diffractometer with a Ruby	$T_{\min} = 0.483, T_{\max} = 0.558$
(Gemini Cu) detector	5083 measured reflections
Absorption correction: multi-scan	2537 independent reflections
(CrysAlis RED; Oxford	2223 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.021$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	173 parameters
$wR(F^2) = 0.096$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
2537 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C10-C15 rings, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots Cg1^{i}$	0.95	2.85	3.4675 (15)	124
$C12-H12\cdots Cg2^{ii}$	0.95	2.92	3.6616 (17)	136

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

SS thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2306).

References

- Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.
- Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, 01647–01649.
- Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 157–162.
- Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.
- Nakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H. & Satoh, T. (2002). *Bioorg. Med. Chem.* 10, 699–706.

Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.

- Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.
- Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater. 31, 854–859.
- Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.
- Shettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mater. 30, 1297–1303.

supplementary materials

Acta Cryst. (2010). E66, o269-o270 [doi:10.1107/S1600536809054956]

A monoclinic polymorph of 1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one

J. P. Jasinski, R. J. Butcher, B. Narayana, S. Samshuddin and H. S. Yathirajan

Comment

Chalcone is an unique template molecule that is associated with several biological activities. A review on the bioactivities of chalcones is described (Dimmock *et al.* 1999). Chalcones and their heterocyclic analogs as potential antifungal chemotherapeutic agents is published (Opletalova & Sedivy, 1999). Chalcones and flavonoids as anti-tuberculosis agents has been reported (Lin *et al.* 2002) and a review of anti-infective and anti-inflammatory chalcones is also described (Nowakowska, 2007) as well as the synthesis and biological activities of some fluorinated chalcone derivatives (Nakamura *et al.* 2002). In addition, chalcones are finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini *et al.* 2006). Recently, non-linear optical studies on a few chalcones (Jasinski *et al.* 2009) and in view of the importance of chloro chalcones, this paper describes a new polymorphic form of (I), $C_{16}H_{13}ClO_2$, 1-(4-chlorophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one, first reported by Harrison *et al.* (2006). Substantial changes in the cell parameters provides solid support for the recognition of this new polymorphic form for (I).

The title compound, (II), is a chalcone derivative with 4-chlorophenyl and 4-methoxyphenyl rings bonded at the opposite ends of a propenone group, the biologically active region (Fig.1). The dihedral angle between mean planes of the 4-chloro and 4-methoxy substituted benzene rings in (II) is 52.9 (1)° compared to 21.82 (6)° (Harrison *et al.* (2006); 4-chlorohenyl & 4-methoxyphenyl) for polymorph (I) in the orthorhombic, *Pna2*₁, space group. The angles between the mean plane of the prop-2-ene-1-one group and those of the 4-chlorophenyl and 4-methoxyphenyl rings in (II) are 23.3 (3)° and 33.7 (1)°, respectively. This compares to 17.7 (1)° and 6.0 (3)° in polymorph (I). A weak intramolecular C9–H9…O1 hydrogen bond interaction is present which may help to maintain the molecular conformation of the molecule (Table 1) and similar to that observed in (I). While no classical hydrogen bonds are present, weak intermolecular C–H…*Cg* π -ring interactions are observed, Cg1 = C1–C6 and Cg2 = C10–C15, see Table 1.

Experimental

In (II), 4-chloroacetophenone in ethanol (1.54 g, 0.01 mol) (25 ml) was mixed with 4-methoxybenzaldehyde (1.36 g, 0.01 mol) in ethanol (25 ml) and the mixture was treated with an aqueous solution of potassium hydroxide (20 ml, 5%). This mixture was stirred well and left to stand for 24 hr. The resulting crude solid mass was collected by filtration and recrystallized from ethanol, yielding clear blocks of (II). Yield: 90%, m.p.: 391–393 K, analysis found (calculated) for $C_{16}H_{13}ClO_2$: C: 70.5 (70.4%); H: 4.72 (4.76%). The preparation and crystallization procedure for (I) was identical to that described above for (II). However, in (I) the m.p. measured 380 K, a difference of 12 K. The samples of (I) and (II) were not independently tested for concomitant polymorphism.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95-0.98 Å, and with $U_{iso}(H) = 1.18-1.48U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the title compound, $C_{16}H_{13}ClO_2$, (II), showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound, (II), viewed down the *c* axis. Weak C–H..O intramolecular hydrogen bond interactions are shown as dashed lines.

1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one

Crystal data	
C ₁₆ H ₁₃ ClO ₂	F(000) = 568
$M_r = 272.71$	$D_{\rm x} = 1.400 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: -P 2ybc	Cell parameters from 3121 reflections
<i>a</i> = 15.6695 (7) Å	$\theta = 4.2 - 73.8^{\circ}$
<i>b</i> = 14.1235 (8) Å	$\mu = 2.57 \text{ mm}^{-1}$
c = 5.8455 (3) Å	T = 110 K
$\beta = 90.771 \ (5)^{\circ}$	Needle, colorless
$V = 1293.53 (12) \text{ Å}^3$	$0.54 \times 0.13 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector	2537 independent reflections
Radiation source: Enhance (Cu) X-ray Source	2223 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 74.0^{\circ}, \ \theta_{\text{min}} = 4.2^{\circ}$
ω scans	$h = -19 \rightarrow 17$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$k = -16 \rightarrow 17$
$T_{\min} = 0.483, T_{\max} = 0.558$	$l = -5 \rightarrow 7$
5083 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.096$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_0^2) + (0.0574P)^2 + 0.4041P]$ where $P = (F_0^2 + 2F_c^2)/3$
2537 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
173 parameters	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotroi	nic o	r ec	nivalent	isotro	nic dis	nlacement	parameters -	$(Å^2$)
				1001.01			100000000000000000000000000000000000000	1001.01		p	p	(· · ·	/

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.84683 (2)	0.61936 (3)	0.17788 (6)	0.02523 (13)
01	0.47093 (7)	0.63259 (9)	0.70069 (19)	0.0289 (3)
O2	0.01821 (7)	0.61488 (8)	-0.07719 (19)	0.0241 (3)
C1	0.57310 (9)	0.62821 (10)	0.4074 (3)	0.0181 (3)
C2	0.63878 (9)	0.66090 (10)	0.5520 (2)	0.0188 (3)
H2	0.6255	0.6849	0.6990	0.023*
C3	0.72286 (9)	0.65859 (10)	0.4828 (3)	0.0198 (3)
H3	0.7672	0.6817	0.5800	0.024*
C4	0.74128 (9)	0.62174 (10)	0.2682 (3)	0.0193 (3)
C5	0.67775 (10)	0.58747 (11)	0.1233 (3)	0.0205 (3)
H5	0.6916	0.5612	-0.0212	0.025*
C6	0.59317 (9)	0.59211 (11)	0.1929 (3)	0.0202 (3)
H6	0.5489	0.5705	0.0934	0.024*
C7	0.48352 (9)	0.63066 (10)	0.4945 (3)	0.0200 (3)
C8	0.41225 (9)	0.63059 (11)	0.3255 (3)	0.0211 (3)
H8	0.4223	0.6467	0.1704	0.025*
C9	0.33359 (9)	0.60773 (11)	0.3930 (3)	0.0200 (3)
Н9	0.3284	0.5885	0.5479	0.024*

supplementary materials

C10	0.25468 (9)	0.60893 (10)	0.2562 (3)	0.0181 (3)
C11	0.24715 (9)	0.65496 (11)	0.0440 (3)	0.0202 (3)
H11	0.2960	0.6839	-0.0206	0.024*
C12	0.16938 (9)	0.65893 (11)	-0.0730 (3)	0.0200 (3)
H12	0.1648	0.6915	-0.2149	0.024*
C13	0.09809 (9)	0.61476 (10)	0.0193 (3)	0.0187 (3)
C14	0.10492 (9)	0.56679 (11)	0.2274 (3)	0.0202 (3)
H14	0.0567	0.5354	0.2882	0.024*
C15	0.18181 (9)	0.56513 (11)	0.3443 (2)	0.0199 (3)
H15	0.1856	0.5336	0.4877	0.024*
C16	0.00342 (10)	0.67344 (13)	-0.2722 (3)	0.0263 (3)
H16A	0.0140	0.7397	-0.2311	0.039*
H16B	-0.0559	0.6662	-0.3248	0.039*
H16C	0.0420	0.6547	-0.3948	0.039*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0180 (2)	0.0276 (2)	0.0302 (2)	0.00214 (13)	0.00556 (14)	0.00128 (15)
01	0.0214 (6)	0.0441 (7)	0.0212 (6)	-0.0035 (5)	0.0006 (4)	0.0008 (5)
02	0.0158 (5)	0.0266 (6)	0.0298 (6)	-0.0025 (4)	-0.0041 (4)	0.0048 (5)
C1	0.0174 (7)	0.0170 (7)	0.0198 (7)	-0.0009 (5)	-0.0019 (5)	0.0039 (6)
C2	0.0197 (7)	0.0188 (7)	0.0180 (7)	0.0019 (5)	-0.0009 (5)	-0.0002 (6)
C3	0.0185 (7)	0.0188 (7)	0.0221 (7)	0.0000 (5)	-0.0031 (5)	-0.0009 (6)
C4	0.0167 (7)	0.0172 (7)	0.0239 (7)	0.0018 (5)	0.0022 (6)	0.0034 (6)
C5	0.0251 (7)	0.0189 (7)	0.0176 (7)	0.0019 (6)	0.0016 (6)	-0.0002 (5)
C6	0.0194 (7)	0.0206 (7)	0.0206 (7)	-0.0015 (5)	-0.0038 (5)	0.0008 (6)
C7	0.0196 (7)	0.0193 (7)	0.0212 (7)	-0.0006 (5)	-0.0008 (6)	0.0012 (6)
C8	0.0178 (7)	0.0248 (8)	0.0207 (7)	0.0005 (6)	0.0000 (6)	0.0021 (6)
C9	0.0206 (7)	0.0189 (7)	0.0204 (7)	0.0017 (5)	-0.0001 (6)	0.0010 (6)
C10	0.0167 (7)	0.0170 (7)	0.0207 (7)	0.0023 (5)	0.0015 (5)	-0.0012 (6)
C11	0.0164 (7)	0.0222 (7)	0.0220 (7)	-0.0007 (5)	0.0032 (5)	0.0011 (6)
C12	0.0195 (7)	0.0215 (8)	0.0190 (7)	0.0001 (6)	0.0012 (5)	0.0008 (6)
C13	0.0161 (7)	0.0171 (7)	0.0228 (7)	0.0009 (5)	-0.0013 (5)	-0.0033 (6)
C14	0.0177 (7)	0.0187 (7)	0.0245 (7)	-0.0015 (5)	0.0039 (5)	0.0012 (6)
C15	0.0212 (7)	0.0186 (7)	0.0201 (7)	0.0016 (6)	0.0030 (5)	0.0015 (6)
C16	0.0213 (7)	0.0341 (9)	0.0235 (8)	0.0027 (6)	-0.0036 (6)	0.0014 (7)

Geometric parameters (Å, °)

Cl1—C4	1.7431 (15)	C8—H8	0.9500
O1—C7	1.2240 (19)	C9—C10	1.464 (2)
O2—C13	1.3659 (18)	С9—Н9	0.9500
O2—C16	1.4248 (19)	C10—C15	1.403 (2)
C1—C6	1.394 (2)	C10-C11	1.404 (2)
C1—C2	1.401 (2)	C11—C12	1.391 (2)
C1—C7	1.500 (2)	C11—H11	0.9500
C2—C3	1.384 (2)	C12—C13	1.395 (2)
С2—Н2	0.9500	C12—H12	0.9500

C3—C4	1.392 (2)	C13—C14	1.395 (2)
С3—Н3	0.9500	C14—C15	1.377 (2)
C4—C5	1.386 (2)	C14—H14	0.9500
C5—C6	1.393 (2)	C15—H15	0.9500
С5—Н5	0.9500	C16—H16A	0.9800
С6—Н6	0.9500	C16—H16B	0.9800
С7—С8	1.481 (2)	C16—H16C	0.9800
C8—C9	1.339 (2)		
C13—O2—C16	118.00 (12)	С8—С9—Н9	116.2
C6—C1—C2	119.36 (14)	С10—С9—Н9	116.2
C6—C1—C7	122.52 (13)	C15—C10—C11	118.00 (13)
C2—C1—C7	118.09 (13)	C15—C10—C9	118.70 (14)
C3—C2—C1	120.69 (14)	C11—C10—C9	123.25 (13)
C3—C2—H2	119.7	C12—C11—C10	121.06 (13)
C1—C2—H2	119.7	C12—C11—H11	119.5
C2-C3-C4	118.82 (13)	C10-C11-H11	119.5
C2—C3—H3	120.6	C11-C12-C13	119 52 (14)
C4—C3—H3	120.6	C11—C12—H12	120.2
$C_{5} - C_{4} - C_{3}$	121.70 (14)	C13 - C12 - H12	120.2
$C_{5} - C_{4} - C_{11}$	119.01 (12)	02-013-012	125.02(13)
C_{3} C_{4} C_{11}	119.01 (12)	02 - C13 - C14	123.02(13) 114.83(13)
C_{4} C_{5} C_{6}	119.29 (11)	$C_{12} = C_{13} = C_{14}$	120.15(13)
C4-C5-H5	120.5	$C_{12} = C_{13} = C_{14}$	120.13(13) 119.82(14)
C6 C5 H5	120.5	$C_{15} = C_{14} = C_{15}$	119.82 (14)
	120.5	$C_{13} = C_{14} = H_{14}$	120.1
C_{5}	120.46 (13)	$C_{13} - C_{14} - M_{14}$	120.1
C_{3}	119.8	C14 - C15 - C10	121.41(14)
C1 = C0 = H0	119.8	C14—C15—H15	119.5
01 - 07 - 08	121.//(14)	C10-C13-H13	119.5
	119.92 (13)	02-C16-H16A	109.5
	118.31 (13)	02-C16-H16B	109.5
C9_C8_C7	119.51 (14)	H16A—C16—H16B	109.5
C9—C8—H8	120.2	02—C16—H16C	109.5
C/C8H8	120.2	H16A—C16—H16C	109.5
C8—C9—C10	127.64 (14)	H16B—C16—H16C	109.5
C6—C1—C2—C3	0.7 (2)	C7—C8—C9—C10	176.11 (14)
C7—C1—C2—C3	178.69 (13)	C8—C9—C10—C15	167.66 (15)
C1—C2—C3—C4	-1.0 (2)	C8—C9—C10—C11	-14.8 (2)
C2—C3—C4—C5	-0.1 (2)	C15-C10-C11-C12	1.4 (2)
C2—C3—C4—Cl1	179.45 (11)	C9—C10—C11—C12	-176.08 (14)
C3—C4—C5—C6	1.4 (2)	C10-C11-C12-C13	-1.4 (2)
Cl1—C4—C5—C6	-178.06 (11)	C16—O2—C13—C12	-7.9 (2)
C4—C5—C6—C1	-1.8 (2)	C16—O2—C13—C14	171.26 (13)
C2-C1-C6-C5	0.7 (2)	C11—C12—C13—O2	178.95 (14)
C7—C1—C6—C5	-177.17 (14)	C11—C12—C13—C14	-0.2 (2)
C6—C1—C7—O1	155.92 (15)	O2-C13-C14-C15	-177.58 (13)
C2-C1-C7-O1	-22.0 (2)	C12—C13—C14—C15	1.6 (2)
C6—C1—C7—C8	-24.0 (2)	C13-C14-C15-C10	-1.6 (2)
C2—C1—C7—C8	158.05 (14)	C11-C10-C15-C14	0.0 (2)

supplementary materials

O1—C7—C8—C9	-17.5 (2)	C9—C10—C15—C14	177.68 (13)
C1—C7—C8—C9	162.41 (14)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the	C1-C6 and C10-C15 r	ings, respectively.		
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
С9—Н9…О1	0.95	2.47	2.8080 (19)	101.
C2—H2···Cg1 ⁱ	0.95	2.85	3.4675 (15)	124
C12—H12···Cg2 ⁱⁱ	0.95	2.92	3.6616 (17)	136
S_{-}	$(1) = \frac{1}{2} = \frac{1}{2}$			

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) x, -y+3/2, z-1/2.

